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Sec14 is the major phosphatidylinositol (PtdIns)/phosphatidylcholine (PtdCho)

transfer protein in the yeast Saccharomyces cerevisiae and is the founding

member of the Sec14 protein superfamily. Recent functional data suggest that

Sec14 functions as a nanoreactor for PtdCho-regulated presentation of PtdIns

to PtdIns kinase to affect membrane trafficking. Extrapolation of this concept

to other members of the Sec14 superfamily suggests a mechanism by which a

comprehensive cohort of Sec14-like nanoreactors sense correspondingly diverse

pools of lipid metabolites. In turn, metabolic information is translated to

signaling circuits driven by phosphoinositide metabolism. Sfh3, one of five Sec14

homologs in yeast, exhibits several interesting functional features, including its

unique localization to lipid particles and microsomes. This localization forecasts

novel regulatory interfaces between neutral lipid metabolism and phosphoinosi-

tide signaling. To launch a detailed structural and functional characterization of

Sfh3, the recombinant protein was purified to homogeneity, diffraction-quality

crystals were produced and a native X-ray data set was collected to 2.2 Å

resolution. To aid in phasing, SAD X-ray diffraction data were collected to

1.93 Å resolution from an SeMet-labeled crystal at the Southeast Regional

Collaborative Access Team at the Advanced Photon Source. Here, the cloning

and purification of Sfh3 and the preliminary diffraction of Sfh3 crystals are

reported, enabling structural analyses that are expected to reveal novel principles

governing ligand binding and functional specificity for Sec14-superfamily

proteins.

1. Introduction

Membrane trafficking is central to cellular processes in eukaryotic

organisms. The Saccharomyces cerevisiae SEC14 gene product (Sec14)

is the founding member of the Sec14 superfamily of proteins, which

contains over 500 distinct proteins. It is the major phosphatidyl-

inositol (PtdIns)/phosphatidylcholine (PtdCho) transfer protein in

yeast and plays an essential role in stimulating protein transport from

the trans-Golgi network (Bankaitis et al., 1990). Sec14 proteins

coordinate critical aspects of lipid metabolism with the action of

proteins that catalyze the biogenesis of transport vesicles on the

trans-Golgi network and endosomal membranes (Cleves et al., 1991;

McGee et al., 1994; Xie et al., 1998; Li et al., 2002; Yanagisawa et al.,

2002; Bankaitis et al., 2010). Understanding the mechanics of how

Sec14-like proteins execute phospholipid (PL) exchange is of central

importance given that heterotypic PL-exchange reactions lie at the

heart of the mechanisms by which these proteins integrate lipid

metabolism with phosphoinositide (PIP) signaling (Schaaf et al., 2008;

Bankaitis et al., 2010).

Sfh3 (Sec 14 homolog 3) is only distantly related to Sec14, sharing

�25% identity over essentially the entire primary sequence (Li et al.,

2000). Like Sec14, Sfh3 catalyzes PtdIns transfer. However, other

biological assays demonstrate that the functional properties of Sfh3

fundamentally differ from those of Sec14 (Li et al., 2000; Routt et al.,

2005). While Sfh3 is speculated to play a role in sterol biosynthesis

(Griac, 2007), the data to this effect are indirect and weak. Sfh3

localizes to lipid particles and microsomes; however, the function of

Sfh3 at these sites remains uncharacterized. The mechanisms which

functionally distinguish Sec14 from Sfh3 remain unknown.
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To investigate Sfh3 function from a structural perspective, we

purified Sfh3 and generated diffraction-quality crystals of both native

and SeMet-substituted proteins. Corresponding data sets were

collected at 2.2 and 1.93 Å, respectively. Experimental phasing of

SeMet-Sfh3 is under way. The Sfh3 structure is expected to reveal

new principles regarding the functional engineering of lipid-

metabolic nanoreactors of the Sec14 protein superfamily.

2. Materials and methods

2.1. Cloning and expression of recombinant Sfh3

DNA manipulations were carried out using standard protocols.

The entire SFH3 open-reading frame was amplified from yeast

genomic DNA by the polymerase chain reaction using 50-CGG-

ggtaccATGTTCAAGAGATTTAGCAAAAAG-30 and 50-CGGgag-

ctcTTACACGGTACTGCTTTCCG-30 as the forward and reverse

oligonucleotide primers, respectively. The amplified product was

adenine-tailed and incorporated into the pGEM-T Easy Vector

(Promega, Madison, Wisconsin, USA) following the manufacturer’s

instructions to generate plasmid pGEM-SFH3. To create an expres-

sion system for an octahistidine-tagged version of Sfh3 (His8-Sfh3),

the SFH3-coding region was excised from pGEM-SFH3 by digestion

with KpnI and SacI restriction endonucleases. The purified DNA

fragment was subcloned into a modified version of bacterial expres-

sion vector PET28b (Novagen, Madison, Wisconsin, USA) in which

an octahistidine-tag coding cassette followed by a KpnI site was

inserted into the unique NcoI site of the vector.

2.2. Protein purification and SeMet derivatization

The PET28-SFH3 construct was transferred into Escherichia coli

BL21-CodonPlus(DE3)-RIL cells (Stratagene, La Jolla, California,

USA). Protein expression was induced by the addition of 100 mM

IPTG to the growth medium and cultures were incubated for a

further 20 h at 289 K before harvesting cells. Cell-free lysates were

generated by lysozyme digestion followed by collisional disruption

with glass beads. Crude cell lysates were clarified by serial centrifu-

gation at 26 000g and 100 000g and the clarified supernatants were

incubated with Talon Co2+ resin (BD Biosciences Clontech) over-

night at 277 K with agitation. The Co2+ resin was collected by

centrifugation and thoroughly washed with lysis buffer (300 mM

NaCl, 50 mM sodium phosphate pH 7.5, 2 mM �-mercaptoethanol)

supplemented with 5 mM imidazole. Bound proteins were eluted with

a linear 5–200 mM imidazole gradient and fractions containing His8-

Sfh3 were identified by SDS–PAGE and Coomassie staining. Peak

fractions were pooled and buffer-exchanged against lysis buffer to

remove imidazole. His8-Sfh3 was then concentrated to 8 mg ml�1.

Typically, we recovered 20 mg soluble His8-Sfh3 from a litre of

culture. The His8-Sfh3 protein was subjected to further purification

by Sephadex G200 gel-filtration chromatography prior to crystal-

lization trials.

Purification of SeMet-derivatized His8-Sfh3 essentially followed

the procedure described above. However, the E. coli methionine-

auxotrophic strain B834 was used as a production vehicle

(Hendrickson et al., 1990). Cells were cultured in medium containing

SeMet (Molecular Dimensions, UK) in lieu of methionine to effect

substitution.

2.3. Crystallization

Initial screening was performed at the Hauptman–Woodward

Medical Research Institute high-throughput screening laboratory

(Luft et al., 2003). Crystals began appearing after 24 h under a

number of conditions and these were subsequently optimized using

the sitting-drop vapor-diffusion method in 24-well VDX greased

plates (Hampton Research). The reservoir solution consisted of 15–

30% PEG 4000, 5% glycerol, 100 mM ammonium sulfate, 100 mM

ammonium acetate pH 5.6. Thin plate-like crystals were harvested 3–

4 d after mixing 2 ml protein solution (5 mg ml�1) with 2 ml reservoir

solution.

2.4. X-ray data collection and processing

Sfh3 crystals were transferred to a cryoprotectant solution con-

taining 25%(v/v) glycerol and flash-cooled in liquid nitrogen prior

to diffraction data collection at 100 K on beamline 22-ID at the

Southeast Regional Collaborative Access Team (SER-CAT) facility

at the Advanced Photon Source (Argonne National Laboratory,

Argonne, Illinois, USA). A total of 360 images with an oscillation

range of 0.5� were collected from a single crystal at 100 K using a

beam size of 50 � 50 mm. A 2.2 Å resolution X-ray diffraction data

set was collected from a native Sfh3 crystal and processed in space

group P212121. A selenium single-wavelength anomalous dispersion
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Figure 1
Sequence alignment of Sec14-like proteins, with amino-acid residues which interact with PtdCho and PtdIns headgroups in Sfh1 (and Sec14) shaded pink and cyan,
respectively. Protein sequences were aligned using ClustalW2 (Chenna et al., 2003) on the EBI webserver using the Gonnet protein weight matrix. Gap-open and gap-
extension values were set to 10 and 0.1, respectively.



(SAD) data set was also collected to 1.93 Å resolution from an

SeMet-derivatized Sfh3 crystal at a wavelength of 0.97820 Å and

processed in space group P212121. Data were indexed, integrated and

scaled using HKL-2000 (Otwinowski & Minor, 1997). Calculation

of the self-rotation function was carried out using the program

MOLREP (Winn et al., 2011) and structure-factor amplitudes to a

maximum resolution of 4.0 Å. The native Patterson synthesis was

calculated using the program FFT (Winn et al., 2011).

3. Results and concluding remarks

S. cerevisiae Sec14 is the major yeast phosphatidylinositol (PtdIns)/

phosphatidylcholine (PtdCho) transfer protein and is the founding

member of the Sec14-protein superfamily. Structural studies revealed

that Sec14 binds its two phospholipid ligands (PtdIns and PtdCho)

at surprisingly distinct, but overlapping, binding sites (Schaaf et al.,

2008). Functional analyses further demonstrated that the capacity to

bind both PtdIns and PtdCho must be housed within a single protein

molecule in order to produce a biologically active Sec14 protein.

These data are interpreted in a PtdIns presentation model in which

Sec14 functions as a nanoreactor for PtdCho-regulated presentation

of PtdIns to PtdIns kinase. In this way, the Sec14 nanoreactor senses

PtdCho metabolism and translates it to phosphoinositide phosphate

(PIP) synthesis to regulate specific membrane-trafficking pathways.

Structure-based bioinformatics methods predict that the PtdIns-

binding site is conserved in the Sec14 superfamily, while the PtdCho-

binding site is missing from most of the Sec14-like proteins (Fig. 1).

While Sfh3 maintains the PtdIns-binding motif, it does not exhibit a

recognizable PtdCho-binding motif (Fig. 1). Specifically, Sec14 and

its closely related homolog Sfh1 utilize Tyr residues to stabilize the

positively charged PtdCho headgroup via cation–� interactions

(Schaaf et al., 2008). Sfh3 contains Leu residues at these positions.

These substitutions, while not formally incompatible with PtdCho

coordination, are not predicted to favor burial of the choline moiety

deep within the hydrophobic protein core. The low sequence identity

that Sfh3 shares with Sec14, when coupled with its predicted lack of

PtdCho-binding ability, forecasts that Sfh3 will exhibit novel struc-

tural and functional features. Indeed, while Sfh3 is expected to

display the overall Sec14 (or CRAL-TRIO) architecture observed

in members of the Sec14 family of proteins, considerable structural

variation is observed across family members in the ‘gating helix’

which controls access to the phospholipid-binding pocket (Phillips et

al., 1999; Sha et al., 1998; Schaaf et al., 2008; Min et al., 2003; Meier et

al., 2003; Stocker & Baumann, 2003; D’Angelo et al., 2006; Welti et al.,

2007). Given its distinct cellular localization, it is possible that Sfh3

recognizes lipids beyond PtdIns. The identification of the second lipid

ligand other than PtdIns is pivotal to understanding the biological

function of proteins in the Sec14 superfamily. Crystallographic studies

are a critical first step towards the characterization of novel lipid–

Sfh3 interactions and the molecular mechanisms driving lipid binding

and exchange.

Sfh3 was purified to homogeneity by means of Co2+-affinity and

size-exclusion chromatography (Fig. 2). Crystallization proceeded

rapidly and thin plate-like crystals were harvested after 3–4 d (Fig. 3).
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Figure 2
Gel-filtration chromatogram of purified recombinant Sfh3 fractionated by
Sephadex G-200 size-exclusion chromatography. Elution profiles of the protein
markers BSA (67 kDa) and aldolase (158 kDa) are shown. Sfh3 (80 kDa) filters at a
position consistent with a dimer.

Figure 3
Three-dimensional plate-like crystals of Sfh3 grew from 15–30% PEG 4000, 5%
glycerol, 100 mM ammonium sulfate, 100 mM ammonium acetate pH 5.6.

Figure 4
X-ray diffraction image from a native Sfh3 crystal (0.5� oscillation) collected on
SER-CAT beamline 22-ID using a MAR CCD 300 detector at a wavelength of
1.0 Å. Diffraction extends to the detector edge, which corresponds to a resolution
of 1.85 Å.



Despite their non-ideal morphology, diffraction data were collected

to 2.2 Å resolution from these crystals. The X-ray diffraction data

set was processed in space group P212121, with unit-cell parameters

a = 52.65, b = 112.03, c = 144.91 Å (Fig. 4, Table 1). Systematic

absences for odd reflections in the cases of h00, 0k0 and 00l indicated

the presence of a 21 screw axis along all three axes. A self-rotation

function (Rossmann & Blow, 1962) calculated using 4 Å resolution

data in the � = 180� section showed strong pseudo-translation

together with peaks that correspond to three mutually orthogonal

twofold axes, suggesting that the asymmetric unit contains 222 point-

group symmetry (Fig. 5). However, no dominant features could be

assigned to noncrystallographic axes in the � = 180� section. The

observed heights of 3.75� and 3.31� for the corresponding self-

rotation peaks are much weaker than the height of 15.47� for the

origin peak and exceed the heights of all other peaks by less than

twofold. A Patterson function (Patterson, 1935) calculated using all

data showed a strong peak at 0.50, 0.50, 0.37, suggesting a dimer

(Fig. 6) in the asymmetric unit. The Matthews coefficient is

5.25 Å3 Da�1 for one monomer in the asymmetric unit and

2.62 Å3 Da�1 for two copies in the asymmetric unit, with solvent

contents of 76.6 and 53.2%, respectively. Gel-filtration and hydro-

dynamic analyses demonstrate that recombinant Sfh3 purifies as a

dimer (Fig. 2), suggesting that the asymmetric unit contains one copy

of the biologically relevant dimer.

Our efforts to phase the native Sfh3 data set by molecular

replacement failed using either the ‘open’ conformation of Sec14

(PDB entry 1aua; Sha et al., 1998) or the ‘closed’ conformation of

Sfh1 (PDB entries 3b74, 3b7n, 3b7q and 3b7z; Schaaf et al., 2008) as

search models. Thus, we expect that the conformation of Sfh3 is

sufficiently different from previously observed Sec14 structures to

prohibit molecular replacement. This intriguing possibility suggests

that solution of the Sfh3 structure will capture yet another func-

tionally important conformation for this class of PITPs.

To obtain experimental phase information, recombinant SeMet-

derivatized Sfh3 was purified from E. coli. Crystals were successfully

generated and diffracted to 1.93 Å resolution. A SAD data set was

collected to 1.93 Å resolution and processed in space group P212121,

with unit-cell parameters a = 52.52, b = 114.72, c = 144.69 Å (Fig. 4,

Table 1). The experimental phasing of Sfh3 is under way and we

expect that the forthcoming Sfh3 structure will reveal architectural

features that are unique to Sfh3. Such high-resolution information

will significantly extend our current understanding of the role of

Sec14-like proteins in lipid signaling.
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